STATISTICS I - 2nd Year Management Science BSc - 1st semester - 05/11/2015
 $1^{\text {st }}$ Mid-Term Exam - Theoretical Part V1
 (theoretical part duration - 20 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (40 points). This answer sheet will be collected 20 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad Section: \qquad Number: \qquad
Each of the following 2 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the $\mathbf{2}$ groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (\mathbf{T}) or false (\mathbf{F}) by ticking the corresponding box with a cross(X):

1. Let A, B, C be events of a sample space Ω.

If A, B are mutually exclusive events and $P(B)>0$, then $P(A \mid B)=P(B)$.		
$P(A)=P(A-B)+P(A \cap B)$.		
If $B=A \cup C$, then $P(B) \geq P(C)$		
Let events A_{1}, A_{2} and A_{3} be such that $P\left(A_{1}\right)=0.4, P\left(A_{2}\right)=0.2, P\left(A_{3}\right)=0.3$ and		
$P\left(A_{i} \cap A_{j}\right)=0 i, j=1,2,3$. Then A_{1}, A_{2} and A_{3} are a partition of sample space S.		

2. Let X be a random variable with cumulative distribution function $F_{X}(x)$.

$F_{X}(x)<P(X \leq x)$ for any $x \in \mathbb{R}$		
Let $Y=\varphi(X)$ be a function of X. If X is a continuous random variable, then Y is a continuous random variable.		
If $F_{X}(x)$ is differentiable at x, then we have that $F_{X}^{\prime}(x) \geq 0$		
If X is discrete, for any $a, b \in \mathbb{R}, a<b, P(a \leq X \leq b)=F_{X}(b)-F_{X}(a)$.		

The following question is worth 15 points and should be answered in the space provided. Justify all your steps.
6. If A and A^{\prime} are complementary events, using the postulates of the measure of probability, show that $P\left(A^{\prime}\right)=1-P(A)$.

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 05/11/2015
 $1^{\text {st }}$ Mid-Term Exam - Theoretical Part V1
 (theoretical part duration - 20 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (40 points). This answer sheet will be collected 20 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad Section: \qquad Number: \qquad
Each of the following 2 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the $\mathbf{2}$ groups varies between a minimum of zero and a maximum of $\mathbf{1 0}$ points.

Indicate whether the following statements are true (\mathbf{T}) or false (\mathbf{F}) by ticking the corresponding box with a cross(X):

1. Let A, B, C be events of a sample space Ω.

If A, B are independent events and $P(B)>0$, then $P(A \mid B)=P(B)$.		
$P(A-B)=P(A)-P(A \cap B)$.		
If $A=B \cup C$, then $P(A) \geq P(B)$		
Let events A_{1}, A_{2} and A_{3} be such that $P\left(A_{1}\right)=0.5, P\left(A_{2}\right)=0.2, P\left(A_{3}\right)=0.3$ and		
$P\left(A_{i} \cap A_{j}\right)=0 i, j=1,2,3$. Then A_{1}, A_{2} and A_{3} are a partition of sample space S.		

2. Let X be a random variable with cumulative distribution function $F_{X}(x)$.

$F_{X}(x)>P(X \leq x)$ for any $x \in \mathbb{R}$		
Let $Y=\varphi(X)$ be a function of X. If X is a discrete random variable, then Y can be a continuous random variable.		
If $F_{X}(x)$ is differentiable at x, then we have that $F_{X}^{\prime}(x) \geq 0$		
If X is discrete, for any $a, b \in \mathbb{R}, a<b, P(a<X<b)=F_{X}(b)-F_{X}(a)$.		

The following questions is worth 15 points and should be answered in the space provided. Justify all your steps.
6. If A and A^{\prime} are complementary events, using the postulates of the measure of probability, show that $P\left(A^{\prime}\right)=1-P(A)$.

STATISTICS I-2nd Year Management Science BSc - 1st semester - 05/11/2015 $1^{\text {st }}$ Mid-Term Exam - Practical Part
(practical part duration - 40 minutes)
This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an \mathbf{X} the corresponding square. The other questions should be answered in the space provided.
Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

Name: \qquad
№: \qquad

		Don't write here	
1a.(10)	2a.(10)	3a.(11)	$\mathrm{T}:$
1b.(10)	2b.(15)	3b.(15)	$\mathrm{P}:$

1
Consider a city where only two daily newspapers are printed, newspaper A and newspaper B. It is known that 5% of its inhabitants read both newspapers, while 25% only read newspaper A, and 20% only read newspaper B.
a) If 20 persons were randomly chosen from the people in this city, compute the probability that exactly 4 of them read both newspapers. (signal with an X the right answer,)
(i) 0,0746
(ii) 0,9885
(iii) 0,0133
(iv) 0,9974
b) One person is randomly chosen from the people in this city and helshe is a reader of newspaper A. Determine the probability that the chosen person was a reader of newspaper B.

Answer to 1.b)

Let (X, Y) be a random vector representing, for a family living in a certain district, the number of children (X) and the number of rooms in their home (Y). The joint probability function is given in the following table:

Y		0	1	2	3
	2	0,04	0,05	0.02	0.00
	3	0,05	0,09	0,14	0.05
	4	0,02	0.12	0.22	0.20

a) If a family from this district have more than 1 child, find the probability that the family lives in a home with at least 3 rooms.
(i) 0,21
(ii) 0.35
(iii) 0.81
(iv) 0.46
b) Find the probability that a family from this district lives in a home with more than 1 but less than four rooms.

Answer 2.b)

3

Consider a random vector (X, Y) with probability density function given by:

$$
f_{X, Y}(x, y)=2 \quad(0<x<1 ; 0<y<1 / 2)
$$

a) Find the marginal probability density function of X and Y. Are X and Y independent?

Answer 3.a)

b) Compute $P(X \leq 1 / 2)$.

Answer 3.b)

(practical part duration - 40 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an \mathbf{X} the corresponding square. The other questions should be answered in the space provided.
Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth - 2.5 points.

Name:
\qquad

Consider a city where only two daily newspapers are printed, newspaper A and newspaper B. It is known that 5% of its inhabitants read both newspapers, while 25% only read newspaper A, and 20% only read newspaper B.
c) If 10 persons were randomly chosen from the people in this city, compute the probability that exactly 2 of them read both newspapers. (signal with an X the right answer,)
(i) 0,0746
(ii) $0,9885 \square$
(iii) 0,0133
(iv) 0,9974
d) One person is randomly chosen from the people in this city and helshe is a reader of newspaper B. Determine the probability that the chosen person was a reader of newspaper A.

Answer to 1.b)

BCONOMICS \& MANAGㅍMNNㄴ

Let (X, Y) be a random vector representing, for a family living in a certain district, the number of children (X) and the number of rooms in their home (Y). The joint probability function is given in the following table:

Y		0	1	2	3
	2	0,04	0,05	0.02	0.00
	3	0,05	0,09	0,14	0.05
	4	0,02	0.12	0.22	0.20

c) If a family from this district lives in a home with 3 rooms, find the probability that the family have less than 2 children.
(i) 0,42
(ii) $0.14 \square$
(iii) 0.27
(iv) 0.15
d) Find the probability that a family from this district has a number of children equal or bigger than 1 but less than 3 .

Answer 2.b)

3
Consider a random vector (X, Y) with probability density function given by:

$$
f_{X, Y}(x, y)=2 \quad(0<x<1 ; 0<y<1 / 2)
$$

c) Find the marginal probability density function of X and Y. Are X and Y independent?

Answer 3.a)

d) Compute $P(Y \leq 1 / 4)$.

Answer 3.b)

