

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 05/11/2015

1st Mid-Term Exam – Theoretical Part V1

(theoretical part duration - 20 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (40 points). This answer sheet will be collected 20 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. **GOOD LUCK!**

Name:

_Section:____Number:__

Each of the following 2 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the 2 groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross(X):

1. Let *A*, *B*, *C* be events of a sample space Ω .

If A, B are mutually exclusive events and $P(B) > 0$, then $P(A B) = P(B)$.	
$P(A) = P(A - B) + P(A \cap B).$	
If $B = A \cup C$, then $P(B) \ge P(C)$	
Let events A_1 , A_2 and A_3 be such that $P(A_1) = 0.4$, $P(A_2) = 0.2$, $P(A_3) = 0.3$ and	
$P(A_i \cap A_j) = 0$ <i>i</i> , <i>j</i> = 1, 2, 3. Then A_1 , A_2 and A_3 are a partition of sample space <i>S</i> .	

2. Let *X* be a random variable with cumulative distribution function $F_X(x)$.

	Т	F
$F_X(x) < P(X \le x)$ for any $x \in \mathbb{R}$		
Let $Y = \varphi(X)$ be a function of X. If X is a continuous random variable, then Y is a continuous random variable.		
If $F_X(x)$ is differentiable at x , then we have that $F'_X(x) \ge 0$		
If X is discrete, for any $a, b \in \mathbb{R}$, $a < b$, $P(a \le X \le b) = F_X(b) - F_X(a)$.		

The following question is worth 15 points and should be answered in the space provided. Justify all your steps.

6. If *A* and *A'* are complementary events, using the postulates of the measure of probability, show that P(A') = 1 - P(A).

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 05/11/2015

1st Mid-Term Exam – Theoretical Part V1

(theoretical part duration - 20 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (40 points). This answer sheet will be collected 20 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. **GOOD LUCK!**

Name:

_Section:____Number:__

Each of the following 2 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the 2 groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross(X):

1. Let *A*, *B*, *C* be events of a sample space Ω .

	r
If A, B are independent events and $P(B) > 0$, then $P(A B) = P(B)$.	
$P(A-B) = P(A) - P(A \cap B).$	
If $A = B \cup C$, then $P(A) \ge P(B)$	
Let events A_1 , A_2 and A_3 be such that $P(A_1) = 0.5$, $P(A_2) = 0.2$, $P(A_3) = 0.3$ and	
$P(A_i \cap A_j) = 0$ <i>i</i> , <i>j</i> = 1, 2, 3. Then A_1 , A_2 and A_3 are a partition of sample space <i>S</i> .	

2. Let *X* be a random variable with cumulative distribution function $F_X(x)$.

	Т	F
$F_X(x) > P(X \le x)$ for any $x \in \mathbb{R}$		
Let $Y = \varphi(X)$ be a function of X. If X is a discrete random variable, then Y can be a continuous random variable.		
If $F_X(x)$ is differentiable at x , then we have that $F'_X(x) \ge 0$		
If X is discrete, for any $a, b \in \mathbb{R}$, $a < b$, $P(a < X < b) = F_X(b) - F_X(a)$.		

The following questions is worth 15 points and should be answered in the space provided. Justify all your steps.

6. If *A* and *A'* are complementary events, using the postulates of the measure of probability, show that P(A') = 1 - P(A).

STATISTICS I - 2nd Year Management Science BSc - 1st semester – 05/11/2015 1st Mid-Term Exam – Practical Part

(practical part duration – 40 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an X the corresponding square. The other questions should be answered in the space provided. Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

			Nº:	
		Don't write here		
1a.(10)	2a.(10)	3a.(11)	T:	
1b.(10)	2b.(15)	3b.(15)	P:	

1

Consider a city where only two daily newspapers are printed, newspaper A and newspaper B. It is known that 5% of its inhabitants read both newspapers, while 25% only read newspaper A, and 20% only read newspaper B.

- **a)** If 20 persons were randomly chosen from the people in this city, compute the probability that exactly 4 of them read both newspapers. (signal with an X the right answer,)
 - (i) 0,0746 □ (ii) 0,9885 □ (iii) 0,0133 □ (iv) 0,9974 □
- b) One person is randomly chosen from the people in this city and he\she is a reader of newspaper A. Determine the probability that the chosen person was a reader of newspaper B.

Answer to 1.b)

Let (X, Y) be a random vector representing, for a family living in a certain district, the number of children (X) and the number of rooms in their home (Y). The joint probability function is given in the following table:

X					
		0	1	2	3
Y	2	0,04	0,05	0.02	0.00
	3	0,05	0,09	0,14	0.05
	4	0,02	0.12	0.22	0.20

- a) If a family from this district have more than 1 child, find the probability that the family lives in a home with at least 3 rooms.
 - (i) 0,21 □ (ii) 0.35 □ (iii) 0.81 □ (iv) 0.46 □
- b) Find the probability that a family from this district lives in a home with more than 1 but less than four rooms.

Answer 2.b)

3

Consider a random vector (*X*, *Y*) with probability density function given by:

 $f_{X,Y}(x, y) = 2 \ (0 < x < 1; 0 < y < 1/2)$

a) Find the marginal probability density function of *X* and *Y*. Are *X* and *Y* independent?

Answer 3.a)

b) Compute $P(X \le 1/2)$.

Answer 3.b)

STATISTICS I - 2nd Year Management Science BSc - 1st semester – 05/11/2015 1st Mid-Term Exam – Practical Part

(practical part duration – 40 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an X the corresponding square. The other questions should be answered in the space provided.
Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

Name:

_____Nº:_____

1a.(10) 2a.(10) 3a.(11) T:
1b.(10) 2b.(15) 3b.(15) P:

1

Consider a city where only two daily newspapers are printed, newspaper A and newspaper B. It is known that 5% of its inhabitants read both newspapers, while 25% only read newspaper A, and 20% only read newspaper B.

c) If 10 persons were randomly chosen from the people in this city, compute the probability that exactly 2 of them read both newspapers. (signal with an X the right answer,)

(i) 0,0746 □ (ii) 0,9885□ (iii) 0,0133 □ (iv) 0,9974 □

d) One person is randomly chosen from the people in this city and he\she is a reader of newspaper B. Determine the probability that the chosen person was a reader of newspaper A.

Answer to 1.b)

Let (X,Y) be a random vector representing, for a family living in a certain district, the number of children (*X*) and the number of rooms in their home (*Y*). The joint probability function is given in the following table:

X					
		0	1	2	3
Y	2	0,04	0,05	0.02	0.00
	3	0,05	0,09	0,14	0.05
	4	0,02	0.12	0.22	0.20

c) If a family from this district lives in a home with 3 rooms, find the probability that the family have less than 2 children.

(i) 0,42 □	(ii) 0.14□	(iii) 0.27 🗆	(iv) 0.15 🛛

d) Find the probability that a family from this district has a number of children equal or bigger than 1 but less than 3.

Answer 2.b)

Consider a random vector (*X*, *Y*) with probability density function given by:

$$f_{X,Y}(x,y) = 2 \ (0 < x < 1; 0 < y < 1/2)$$

c) Find the marginal probability density function of *X* and *Y*. Are *X* and *Y* independent?

Answer 3.a)

d) Compute $P(Y \le 1/4)$.

Answer 3.b)